Legume-cereal intercropping systems, in the context of diversity, ecological function, and better yield have been widely studied. Such systems enhance nutrient phytoavailability by balancing root-rhizosphere interactions. Root exudates (RE) play an important role in the rhizospheric interactions of plant-plant and/or plant-microbiome interaction. However, the influence of the primary metabolites of RE on plant-rhizobia interactions in a legume-cereal intercrop system is not known. To understand the plant communication with rhizobia, Cajanus cajan-Zea mays intercropped plants and the broad host range legume nodulating Ensifer fredii NGR234 as the model plants and rhizobium used respectively. A metabolomics-based approach revealed a clear separation between intercropped and monocropped RE of the two plants. Intercropped C. cajan showed an increase in the myo-inositol, and proline, while intercropped Z. mays showed enhanced galactose, D-glucopyranoside, and arginine in the RE. Physiological assays of NGR234 with the RE of intercropped C. cajan exhibited a significant enhancement in biofilm formation, while intercropped Z. mays RE accelerated the bacterial growth in the late log phase. Further, using label-free proteomics, we identified a total of 2570 proteins of NGR234 covering 50% annotated protein sequences upon exposure to Z. mays RE. Furthermore, intercropped Z. mays RE upregulated bacterioferritin comigratory protein (BCP), putative nitroreductase, IlvD, LeuC, D (branched-chain amino acid proteins), and chaperonin proteins GroEL2. Identification offered new insights into the metabolome of the legume-cereal intercrop and proteome of NGR234-Z. mays interactions that underline the new molecular candidates likely to be involved in the fitness of rhizobium in the intercropping system.
Publication Type
Journal Article
Date of Publication
May 1, 2022
Journal
Microbial ecology
Volume/Issue
83/4
ISSN
1432-184X