BACH1 (BTB And CNC Homology 1) and NRF2 (Nuclear Factor Erythroid 2-related Factor 2) are transcription factors that regulate antioxidant and iron metabolism genes by competing for binding to cis-regulatory Maf-binding elements (CsMBEs) as heterodimers with small Maf proteins (sMafs). To dissect the mechanisms underlying this competition, we developed a chimeric tethering system where the DNA-binding domains of BACH1 or NRF2 were covalently linked to sMafG via a flexible, cleavable linker. This design enables efficient heterodimer formation on DNA and circumvents kinetic barriers to partner exchange in the solution. The site-specific fluorescent labelling of proteins allowed for the tracking of complex compositions by electrophoretic mobility shift assays. Both BACH1/sMafG and NRF2/sMafG heterodimers bind CsMBEs with similar affinities. Notably, DNA binding by BACH1 was impaired in a C574-dependent, redox-sensitive manner and promoted the exchange of heterodimer partners. Competition assays demonstrated that BACH1 and NRF2 can displace each other from preformed DNA-bound complexes, with greater efficiency when presented as preassembled heterodimers with sMafG. These findings reveal a redox-sensitive mechanism for regulating transcriptional switches at CsMBEs and highlight how preformed heterodimers facilitate the rapid displacement at target promoters.
inStem (Institute for Stem Cell Science and Regenerative Medicine)


