@article {2375, title = {Biophysical properties of the isolated spike protein binding helix of human ACE2.}, journal = {Biophys J}, volume = {120}, year = {2021}, month = {2021 07 20}, pages = {2785-2792}, abstract = {

The entry of the severe acute respiratory syndrome coronavirus 2 virus in human cells is mediated by the binding of its surface spike protein to the human angiotensin-converting enzyme 2 (ACE2) receptor. A 23-residue long helical segment (SBP1) at the binding interface of human ACE2 interacts with viral spike protein and therefore has generated considerable interest as a recognition element for virus detection. Unfortunately, emerging reports indicate that the affinity of SBP1 to the receptor-binding domain of the spike protein is much lower than that of the ACE2 receptor itself. Here, we examine the biophysical properties of SBP1 to reveal factors leading to its low affinity for the spike protein. Whereas SBP1 shows good solubility (solubility \> 0.8\ mM), circular dichroism spectroscopy shows that it is mostly disordered with some antiparallel β-sheet content and no helicity. The helicity is substantial (\>20\%) only upon adding high concentrations (>=20\% v/v) of 2,2,2-trifluoroethanol, a helix promoter. Fluorescence correlation spectroscopy and single-molecule photobleaching studies show that the peptide oligomerizes at concentrations \>50\ nM. We hypothesized that mutating the hydrophobic residues (F28, F32, and F40) of SBP1, which do not directly interact with the spike protein, to alanine would reduce peptide oligomerization without affecting its spike binding affinity. Whereas the mutant peptide (SBP1) shows substantially reduced oligomerization propensity, it does not show improved helicity. Our study shows that the failure of efforts, so far, to produce a short SBP1 mimic with a high affinity for the spike protein is not only due to the lack of helicity but is also due to the heretofore unrecognized problem of oligomerization.

}, keywords = {Angiotensin-Converting Enzyme 2, COVID-19, Humans, Peptidyl-Dipeptidase A, Protein Binding, SARS-CoV-2, Spike Glycoprotein, Coronavirus}, issn = {1542-0086}, doi = {10.1016/j.bpj.2021.06.017}, author = {Das, Anirban and Vishvakarma, Vicky and Dey, Arpan and Dey, Simli and Gupta, Ankur and Das, Mitradip and Vishwakarma, Krishna Kant and Roy, Debsankar Saha and Yadav, Swati and Kesarwani, Shubham and Venkatramani, Ravindra and Maiti, Sudipta} } @article {2216, title = {A 2-Tyr-1-carboxylate Mononuclear Iron Center Forms the Active Site of a Paracoccus Dimethylformamidase.}, journal = {Angew Chem Int Ed Engl}, volume = {59}, year = {2020}, month = {2020 09 21}, pages = {16961-16966}, abstract = {

N,N-dimethyl formamide (DMF) is an extensively used organic solvent but is also a potent pollutant. Certain bacterial species from genera such as Paracoccus, Pseudomonas, and Alcaligenes have evolved to use DMF as a sole carbon and nitrogen source for growth via degradation by a dimethylformamidase (DMFase). We show that DMFase from Paracoccus sp. strain DMF is a halophilic and thermostable enzyme comprising a multimeric complex of the α β or (α β ) type. One of the three domains of the large subunit and the small subunit are hitherto undescribed protein folds of unknown evolutionary origin. The active site consists of a mononuclear iron coordinated by two Tyr side-chain phenolates and one carboxylate from Glu. The Fe ion in the active site catalyzes the hydrolytic cleavage of the amide bond in DMF. Kinetic characterization reveals that the enzyme shows cooperativity between subunits, and mutagenesis and structural data provide clues to the catalytic mechanism.

}, issn = {1521-3773}, doi = {10.1002/anie.202005332}, author = {Arya, Chetan Kumar and Yadav, Swati and Fine, Jonathan and Casanal, Ana and Chopra, Gaurav and Ramanathan, Gurunath and Vinothkumar, Kutti R and Subramanian, Ramaswamy} }